

17EC35

USN

Third Semester B.E. Degree Examination, July/August 2021 **Network Analysis**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Using source transformation techniques, find 'v' for the circuit in Fig.Q1(a).

$$Fig.Q1(a)$$

$$(07 Marks)$$

o. Obtain equivalent resistance R_{ab} for the circuit in Fig.Q1(b) and hence find 'i'.

Fig.Q1(b) (07 Marks)

c. Explain ideal and practical current sources.

(06 Marks)

2 a. Determine the current I_0 in the circuit of Fig.Q2(a) using Mesh analysis.

Fig.Q2(a) (08 Marks)

b. Use nodal analysis to find v_0 in the network of Fig.Q2(b).

Fig.Q2(b) (08 Marks)

c. Explain the concept of super node with an illustration.

(04 Marks)

3 a. State and prove Reciprocity theorem.

(06 Marks)

b. Use superposition theorem to find i_0 in the circuit shown in Fig.Q3(b).

Fig.Q3(b) (06 Marks)

c. Find Thevenin's equivalent circuit across the terminals a - b for the circuit shown in Fig.Q3(c). (08 Marks)

- 4 a. State and prove maximum power transfer theorem for the case of AC source, hence show that $\rho_{max} = \frac{|V_{TH}|^2}{8R_L}$ (08 Marks)
 - b. Find the current through 16Ω resistor using Norton's theorem in Fig.Q4(b).

Fig.Q4(b) (08 Marks)

c. Find the current through $(10-3j)\Omega$ using Millman's theorem in Fig.Q4(c). (04 Marks)

5 a. The switch 'K' is changed from position 1 to position 2 at t=0. Steady state condition having been reached at position 1. Find the values of i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t=0^+$. [Refer Fig.Q5(a)] (06 Marks)

b. In the network shown in Fig.Q5(b), $V_1(t) = e^{-t}$ for $t \ge 0$ and is zero for all t < 0. If the capacitor is initially uncharged. Determine the value of $\frac{d^2v_2}{dt^2}$ and $\frac{d^3v_2}{dt^3}$ at $t = 0^+$.

(08 Marks)

c. Explain initial and final conditions in case of a capacitor.

(06 Marks)

- 6 a. For the circuit shown in Fig.Q6(a),
 - (i) Find the differential equation for $i_L(t)$
 - (ii) Find Laplace transform of $i_L(t)$
 - (iii) Solve for $i_L(t)$

b. For the circuit shown in Fig.Q6(b), (i) Find the differential equation for $i_L(t)$, (ii) Find Laplace transform of $i_c(t)$, (iii) Solve for $i_L(t)$. (08 Marks)

Fig.Q6(b)

c. Obtain Laplace transform for a decaying exponential signal.

(04 Marks)

- 7 a. Prove that the resonant frequency is the geometric mean of the two half power frequencies i.e., Show that $\omega_0 = \sqrt{\omega_1 \omega_2}$ (08 Marks)
 - b. Obtain an expression for quality factor of an capacitor.

(07 Marks)

- c. In a series circuit, $R = 6 \Omega$, $\omega_0 = 4.1 \times 10^6$ rad/sec, bandwidth = 10^5 rad/sec. Compute L, C half power frequencies and Q. (05 Marks)
- 8 a. Obtain an expression for the resonant frequency in a parallel resonant circuit. (08 Marks)
 - b. Show that a two branch parallel resonant circuit is resonant at all frequencies when

$$R_{L} = R_{C} = \sqrt{\frac{L}{C}}$$
 (07 Marks)

c. Find the value of R_L for which the circuit is at resonance, as shown in Fig.Q8(c). (05 Marks)

9 a. Obtain an expression for h-parameters in terms of Z-parameters.

(08 Marks)

b. Find Z and Y parameters for the network shown in Fig.Q9(b).

(08 Marks)

c. Explain ABCD parameters.

(04 Marks)

- 10 a. Obtain an expression for Y-parameters in terms of ABCD parameters. (08 Marks)
 - b. Find ABCD parameters for the network shown in Fig.Q10(b).

(08 Marks)

- c. State reciprocity condition for
 - (i) Z parameters
 - (ii) Y parameters
 - (iii) h parameters
 - (iv) ABCD parameters (04 Marks)

* * * * *